说三维重建首先要从计算机视觉讲起。计算机视觉包含两个基本方向,物体识别和三维重建。图像识别的突破性进展源自于2012年卷积神经网络(CNN)的兴起。在此之前,计算机视觉的核1心研究方向是三维重建。因为在当时,对于图像的特征提取主要是通过三维重建的方法来定义和实现的。自2012年以来,图像的特征便逐渐由神经网络来自动学习。
三维重建的应用是很广泛的,三维实景建模,对于自动驾驶、VR、AR等应用领域应用来讲,三维重建是核1心技术,并且实时三维重建是必然趋势,因为我们生活在三维空间里,必须将虚拟世界恢复到三维,我们才可以和环境进行交互。
全局配准是使用整幅图像直接计算转换矩阵。通过对两帧精细配准结果,按照一定的顺序或一次性的进行多帧图像的配准。这两种配准方式分别称为序列配准(Sequential Registration)和同步配准(Simultaneous Registration)。
配准过程中,匹配误差被均匀的分散到各个视角的多帧图像中,达到削减多次迭代引起的累积误差的效果。值得注意的是,虽然全局配准可以减小误差,但是其消耗了较大的内存存储空间,实景建模,大幅度提升了算法的时间复杂度。
libpcl filters:如采样、去除离群点、特征提取、拟合估计等数据实现过滤器;
libpcl features:实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH和FPFH特征,旋转图像、积分图像,NARF描述子,RIFT,相对标准偏差,数据强度的筛选等等;
libpcl I/O:实现数据的输入和输出操作,例如点云数据文件(PCD)的读写;
libpcl segmentation:实现聚类提取,如通过采样一致性方法对一系列参数模型(如平面、柱面、球面、直线等)进行模型拟合点云分割提取,提取多边形棱镜内部点云等等;
libpcl surface:实现表面重建技术,如网格重建、凸包重建、移动zui小二乘法平滑等;
libpcl register:实现点云配准方法,如ICP等;
libpclkeypoints:实现不同的关键点的提取方法,这可以用来作为预处理步骤,决定在哪儿提取特征描述符;
libpcl range :实现支持不同点云数据集生成的范围图像。
实景建模软件-大势智慧(在线咨询)-实景建模由武汉大势智慧科技有限公司提供。武汉大势智慧科技有限公司是从事“实景三维重建软硬件产品及技术服务”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:吴先生。